
Package: srvyr (via r-universe)
August 23, 2024

Type Package

Title 'dplyr'-Like Syntax for Summary Statistics of Survey Data

Description Use piping, verbs like 'group_by' and 'summarize', and
other 'dplyr' inspired syntactic style when calculating summary
statistics on survey data using functions from the 'survey'
package.

Version 1.3.0.9000

Date 2024-08-19

URL http://gdfe.co/srvyr/, https://github.com/gergness/srvyr/

BugReports https://github.com/gergness/srvyr/issues

Imports dplyr (>= 1.1.0), magrittr, methods, rlang, survey (>= 4.1),
tibble, tidyr, tidyselect, vctrs (>= 0.3.0)

License GPL-2 | GPL-3

Suggests spelling, convey, DBI, dbplyr, ggplot2, knitr, laeken,
Matrix, rmarkdown (>= 2.2.2), pander, RSQLite, survival,
testthat, covr

Encoding UTF-8

VignetteBuilder knitr

RoxygenNote 7.3.2

Language en-US

Repository https://gergness.r-universe.dev

RemoteUrl https://github.com/gergness/srvyr

RemoteRef HEAD

RemoteSha 5b36c380e4bceb469c5c50805f54f32541b653aa

Contents
as_survey . 2
as_survey_design . 4

1

http://gdfe.co/srvyr/
https://github.com/gergness/srvyr/
https://github.com/gergness/srvyr/issues

2 as_survey

as_survey_rep . 7
as_survey_twophase . 10
as_tibble . 12
cascade . 12
collect . 13
cur_svy . 13
cur_svy_wts . 14
dplyr_filter_joins . 15
get_var_est . 15
groups . 16
group_by . 16
group_map_dfr . 17
group_trim . 18
interact . 19
set_survey_vars . 20
srvyr . 20
srvyr-se-deprecated . 22
srvyr_interaction . 24
summarise . 24
summarise_all . 26
survey_corr . 26
survey_mean . 27
survey_old_quantile . 30
survey_quantile . 32
survey_ratio . 33
survey_tally . 35
survey_total . 36
survey_var . 37
svychisq . 39
tbl_svy . 39
tbl_vars . 40
uninteract . 41
unweighted . 41

Index 44

as_survey Create a tbl_svy from a data.frame

Description

as_survey can be used to create a tbl_svy using design information (as_survey_design), repli-
cate weights (as_survey_rep), or a two phase design (as_survey_twophase), or an object created
by the survey package.

as_survey 3

Usage

as_survey(.data, ...)

S3 method for class 'tbl_svy'
as_survey(.data, ...)

S3 method for class 'data.frame'
as_survey(.data, ...)

S3 method for class 'tbl_lazy'
as_survey(.data, ...)

S3 method for class 'survey.design2'
as_survey(.data, ...)

S3 method for class 'svyrep.design'
as_survey(.data, ...)

S3 method for class 'twophase2'
as_survey(.data, ...)

Arguments

.data a data.frame or an object from the survey package

... other arguments, see other functions for details

Details

See vignette("databases", package = "dplyr") for more information on setting up databases
in dplyr.

Value

a tbl_svy

Examples

Examples from ?survey::svydesign
library(survey)
library(dplyr)
data(api)

stratified sample
dstrata <- apistrat %>%

as_survey(strata = stype, weights = pw)

Examples from ?survey::svrepdesign
data(scd)
use BRR replicate weights from Levy and Lemeshow
scd$rep1 <- 2 * c(1, 0, 1, 0, 1, 0)

4 as_survey_design

scd$rep2 <- 2 * c(1, 0, 0, 1, 0, 1)
scd$rep3 <- 2 * c(0, 1, 1, 0, 0, 1)
scd$rep4 <- 2 * c(0, 1, 0, 1, 1, 0)

scdrep <- scd %>%
as_survey(type = "BRR", repweights = starts_with("rep"),

combined_weights = FALSE)

Examples from ?survey::twophase
two-phase simple random sampling.
data(pbc, package="survival")

pbc <- pbc %>%
mutate(randomized = !is.na(trt) & trt > 0,

id = row_number())
d2pbc <- pbc %>%

as_survey(id = list(id, id), subset = randomized)

dplyr 0.7 introduced new style of NSE called quosures
See `vignette("programming", package = "dplyr")` for details
st <- quo(stype)
wt <- quo(pw)
dstrata <- apistrat %>%

as_survey(strata = !!st, weights = !!wt)

as_survey_design Create a tbl_svy survey object using sampling design

Description

Create a survey object with a survey design.

Usage

as_survey_design(.data, ...)

S3 method for class 'data.frame'
as_survey_design(
.data,
ids = NULL,
probs = NULL,
strata = NULL,
variables = NULL,
fpc = NULL,
nest = FALSE,
check_strata = !nest,
weights = NULL,
pps = FALSE,
variance = c("HT", "YG"),

as_survey_design 5

...
)

S3 method for class 'survey.design2'
as_survey_design(.data, ...)

S3 method for class 'tbl_lazy'
as_survey_design(
.data,
ids = NULL,
probs = NULL,
strata = NULL,
variables = NULL,
fpc = NULL,
nest = FALSE,
check_strata = !nest,
weights = NULL,
pps = FALSE,
variance = c("HT", "YG"),
...

)

Arguments

.data A data frame (which contains the variables specified below)

... ignored

ids Variables specifying cluster ids from largest level to smallest level (leaving the
argument empty, NULL, 1, or 0 indicate no clusters).

probs Variables specifying cluster sampling probabilities.

strata Variables specifying strata.

variables Variables specifying variables to be included in survey. Defaults to all variables
in .data

fpc Variables specifying a finite population correct, see svydesign for more details.

nest If TRUE, relabel cluster ids to enforce nesting within strata.

check_strata If TRUE, check that clusters are nested in strata.

weights Variables specifying weights (inverse of probability).

pps "brewer" to use Brewer’s approximation for PPS sampling without replacement.
"overton" to use Overton’s approximation. An object of class HR to use the
Hartley-Rao approximation. An object of class ppsmat to use the Horvitz-
Thompson estimator.

variance For pps without replacement, use variance="YG" for the Yates-Grundy estima-
tor instead of the Horvitz-Thompson estimator

6 as_survey_design

Details

If provided a data.frame, it is a wrapper around svydesign. All survey variables must be included in
the data.frame itself. Variables are selected by using bare column names, or convenience functions
described in select.

If provided a survey.design2 object from the survey package, it will turn it into a srvyr object, so
that srvyr functions will work with it

Value

An object of class tbl_svy

Examples

Examples from ?survey::svydesign
library(survey)
data(api)

stratified sample
dstrata <- apistrat %>%

as_survey_design(strata = stype, weights = pw)

one-stage cluster sample
dclus1 <- apiclus1 %>%

as_survey_design(dnum, weights = pw, fpc = fpc)

two-stage cluster sample: weights computed from population sizes.
dclus2 <- apiclus2 %>%

as_survey_design(c(dnum, snum), fpc = c(fpc1, fpc2))

multistage sampling has no effect when fpc is not given, so
these are equivalent.
dclus2wr <- apiclus2 %>%

dplyr::mutate(weights = weights(dclus2)) %>%
as_survey_design(c(dnum, snum), weights = weights)

dclus2wr2 <- apiclus2 %>%
dplyr::mutate(weights = weights(dclus2)) %>%
as_survey_design(c(dnum), weights = weights)

syntax for stratified cluster sample
(though the data weren't really sampled this way)
apistrat %>% as_survey_design(dnum, strata = stype, weights = pw,

nest = TRUE)

PPS sampling without replacement
data(election)
dpps <- election_pps %>%

as_survey_design(fpc = p, pps = "brewer")

dplyr 0.7 introduced new style of NSE called quosures
See `vignette("programming", package = "dplyr")` for details

as_survey_rep 7

st <- quo(stype)
wt <- quo(pw)
dstrata <- apistrat %>%

as_survey_design(strata = !!st, weights = !!wt)

as_survey_rep Create a tbl_svy survey object using replicate weights

Description

Create a survey object with replicate weights.

Usage

as_survey_rep(.data, ...)

S3 method for class 'data.frame'
as_survey_rep(
.data,
variables = NULL,
repweights = NULL,
weights = NULL,
type = c("BRR", "Fay", "JK1", "JKn", "bootstrap", "successive-difference", "ACS",

"other"),
combined_weights = TRUE,
rho = NULL,
bootstrap_average = NULL,
scale = NULL,
rscales = NULL,
fpc = NULL,
fpctype = c("fraction", "correction"),
mse = getOption("survey.replicates.mse"),
degf = NULL,
...

)

S3 method for class 'tbl_lazy'
as_survey_rep(
.data,
variables = NULL,
repweights = NULL,
weights = NULL,
type = c("BRR", "Fay", "JK1", "JKn", "bootstrap", "successive-difference", "ACS",

"other"),
combined_weights = TRUE,
rho = NULL,

8 as_survey_rep

bootstrap_average = NULL,
scale = NULL,
rscales = NULL,
fpc = NULL,
fpctype = c("fraction", "correction"),
mse = getOption("survey.replicates.mse"),
degf = NULL,
...

)

S3 method for class 'svyrep.design'
as_survey_rep(.data, ...)

S3 method for class 'survey.design2'
as_survey_rep(
.data,
type = c("auto", "JK1", "JKn", "BRR", "bootstrap", "subbootstrap", "mrbbootstrap",

"Fay"),
rho = 0,
fpc = NULL,
fpctype = NULL,
...,
compress = TRUE,
mse = getOption("survey.replicates.mse")

)

S3 method for class 'tbl_svy'
as_survey_rep(
.data,
type = c("auto", "JK1", "JKn", "BRR", "bootstrap", "subbootstrap", "mrbbootstrap",

"Fay"),
rho = 0,
fpc = NULL,
fpctype = NULL,
...,
compress = TRUE,
mse = getOption("survey.replicates.mse")

)

Arguments

.data A data frame (which contains the variables specified below)

... ignored

variables Variables to include in the design (default is all)

repweights Variables specifying the replication weight variables

weights Variables specifying sampling weights

type Type of replication weights

as_survey_rep 9

combined_weights

TRUE if the repweights already include the sampling weights. This is usually
the case.

rho Shrinkage factor for weights in Fay’s method
bootstrap_average

For type = "bootstrap", if the bootstrap weights have been averaged, gives the
number of iterations averaged over.

scale, rscales Scaling constant for variance, see svrepdesign for more information.

fpc Variables specifying a finite population correction, see svrepdesign for more
details.

fpctype Finite population correction information

mse if TRUE, compute variances based on sum of squares around the point estimate,
rather than the mean of the replicates

degf Design degrees of freedom: a single number, or NULL, in which case a value
will be computed automatically, which can be slow for very large data sets. See
svrepdesign for more details.

compress if TRUE, store replicate weights in compressed form (if converting from design)

Details

If provided a data.frame, it is a wrapper around svrepdesign. All survey variables must be in-
cluded in the data.frame itself. Variables are selected by using bare column names, or convenience
functions described in select.

If provided a svyrep.design object from the survey package, it will turn it into a srvyr object, so
that srvyr functions will work with it

If provided a survey design (survey.design2 or tbl_svy), it is a wrapper around as.svrepdesign,
and will convert from a survey design to replicate weights.

Value

An object of class tbl_svy

Examples

Examples from ?survey::svrepdesign()
library(survey)
library(dplyr)
data(scd)
use BRR replicate weights from Levy and Lemeshow
scd <- scd %>%

mutate(rep1 = 2 * c(1, 0, 1, 0, 1, 0),
rep2 = 2 * c(1, 0, 0, 1, 0, 1),
rep3 = 2 * c(0, 1, 1, 0, 0, 1),
rep4 = 2 * c(0, 1, 0, 1, 1, 0))

scdrep <- scd %>%
as_survey_rep(type = "BRR", repweights = starts_with("rep"),

10 as_survey_twophase

combined_weights = FALSE)

dplyr 0.7 introduced new style of NSE called quosures
See `vignette("programming", package = "dplyr")` for details
repwts <- quo(starts_with("rep"))
scdrep <- scd %>%

as_survey_rep(type = "BRR", repweights = !!repwts,
combined_weights = FALSE)

as_survey_twophase Create a tbl_svy survey object using two phase design

Description

Create a survey object by specifying the survey’s two phase design. It is a wrapper around twophase.
All survey variables must be included in the data.frame itself. Variables are selected by using bare
column names, or convenience functions described in select.

Usage

as_survey_twophase(.data, ...)

S3 method for class 'data.frame'
as_survey_twophase(
.data,
id,
strata = NULL,
probs = NULL,
weights = NULL,
fpc = NULL,
subset,
method = c("full", "approx", "simple"),
...

)

S3 method for class 'twophase2'
as_survey_twophase(.data, ...)

Arguments

.data A data frame (which contains the variables specified below)

... ignored

id list of two sets of variable names for sampling unit identifiers

strata list of two sets of variable names (or NULLs) for stratum identifiers

probs list of two sets of variable names (or NULLs) for sampling probabilities

as_survey_twophase 11

weights Only for method = "approx", list of two sets of variable names (or NULLs) for
sampling weights

fpc list of two sets of variables (or NULLs for finite population corrections

subset bare name of a variable which specifies which observations are selected in phase
2

method "full" requires (much) more memory, but gives unbiased variance estimates for
general multistage designs at both phases. "simple" or "approx" use less mem-
ory, and is correct for designs with simple random sampling at phase one and
stratified randoms sampling at phase two. See twophase for more details.

Value

An object of class tbl_svy

Examples

Examples from ?survey::twophase
two-phase simple random sampling.
data(pbc, package="survival")
library(dplyr)

pbc <- pbc %>%
mutate(randomized = !is.na(trt) & trt > 0,

id = row_number())
d2pbc <- pbc %>%

as_survey_twophase(id = list(id, id), subset = randomized)

d2pbc %>% summarize(mean = survey_mean(bili))

two-stage sampling as two-phase
library(survey)
data(mu284)

mu284_1 <- mu284 %>%
dplyr::slice(c(1:15, rep(1:5, n2[1:5] - 3))) %>%
mutate(id = row_number(),

sub = rep(c(TRUE, FALSE), c(15, 34-15)))

dmu284 <- mu284 %>%
as_survey_design(ids = c(id1, id2), fpc = c(n1, n2))

first phase cluster sample, second phase stratified within cluster
d2mu284 <- mu284_1 %>%

as_survey_twophase(id = list(id1, id), strata = list(NULL, id1),
fpc = list(n1, NULL), subset = sub)

dmu284 %>%
summarize(total = survey_total(y1),

mean = survey_mean(y1))
d2mu284 %>%

summarize(total = survey_total(y1),
mean = survey_mean(y1))

12 cascade

dplyr 0.7 introduced new style of NSE called quosures
See `vignette("programming", package = "dplyr")` for details
ids <- quo(list(id, id))
d2pbc <- pbc %>%

as_survey_twophase(id = !!ids, subset = "randomized")

as_tibble Coerce survey variables to a data frame (tibble)

Description

Coerce survey variables to a data frame (tibble)

Arguments

x A tbl_svy object

cascade Summarise multiple values into cascading groups

Description

cascade is similar to summarise, but calculates a summary statistics for the total of a group in
addition to each group. The groupings are chosen by "unpeeling" from the end of the groupings,
and also expanding out interactions to all terms (eg the interactions of all combinations of subsets
of variables as well as each variable on it’s own).

Usage

cascade(.data, ..., .fill = NA, .fill_level_top = FALSE, .groupings = NULL)

Arguments

.data tbl A tbl_svy object

... Name-value pairs of summary functions

.fill Value to fill in for group summaries

.fill_level_top

When filling factor variables, whether to put the value ‘.fill‘ in the first position
(defaults to FALSE, placing it in the bottom).

.groupings (Experimental) A list of lists of quosures to manually specify the groupings to
use, rather than the default.

collect 13

Examples

library(survey)
data(api)

dstrata <- apistrat %>%
as_survey_design(strata = stype, weights = pw)

Calculates the means by stype and also for the whole
sample
dstrata %>%

group_by(stype) %>%
cascade(api99_mn = survey_mean(api99),

api00_mn = survey_mean(api00),
api_diff = survey_mean(api00 - api99))

Calculates the proportions by the interaction of stype & awards
as well as by each of those variable's groups alone, and finally
the total as well
dstrata %>%

group_by(interact(stype, awards)) %>%
cascade(prop = survey_mean())

Can also specify the .groupings manually, though this interface
is a little ugly, as it requires passing a list of quosures or
symbols you've created, rather than the usual syntax
dstrata %>%

cascade(
prop = survey_mean(),
.groupings = list(rlang::quos(stype, awards), rlang::quos(NULL))

)

collect Force computation of a database query

Description

collect retrieves data from a database query (and when run on a tbl_svy object adjusts weights
accordingly). Use collect when you want to run a function from the survey package on a srvyr db
backed object. compute stores results in a remote temporary table.

cur_svy Get the survey data for the current context

14 cur_svy_wts

Description

This is a helper to allow srvyr’s syntactic style. In particular, it tells functions inside of a sum-
marize call what survey to use (for the current group with cur_svy() or the complete survey for
cur_svy_full(). In general, users will not have to worry about getting (or setting) the current
context’s survey, unless they are trying to extend srvyr. See vignette("extending-srvyr") for
more details. current_svy() is deprecated, but returns the same value as cur_svy().

Usage

cur_svy()

cur_svy_full()

current_svy()

Value

a tbl_svy (or error if called with no survey context)

cur_svy_wts Get the full-sample weights for the current context

Description

This is a helper to allow srvyr’s syntactic style. This function allows quick access to the full-sample
weights for the current group, using cur_svy_wts(), See vignette("extending-srvyr") for
more details.

Usage

cur_svy_wts()

Value

a numeric vector containing full-sample weights

Examples

data(api, package = 'survey')

dstrata <- apistrat %>%
as_survey_design(strata = stype, weights = pw)

dstrata %>%
summarize(sum_of_weights = sum(cur_svy_wts()),

kish_deff = var(cur_svy_wts())/(mean(cur_svy_wts())^2))

dplyr_filter_joins 15

dplyr_filter_joins Filtering joins from dplyr

Description

These are data manipulation functions designed to work on a tbl_svy object and another data frame
or tbl_svy object.

Details

semi_join and anti_join filter certain observations from a tbl_svy depending on the presence
or absence of matches in another table. See filter-joins for more details.

Mutating joins (full_join, left_join, etc.) are not implemented for any tbl_svy objects. These
data manipulations may require modifications to the survey variable specifications and so cannot be
done automatically. Instead, use dplyr to perform them while the data is still stored in data.frames.

get_var_est Get the variance estimates for a survey estimate

Description

This is a helper to allow srvyr’s syntactic style. In general, users will not have to worry about
getting survey variance estimates directly unless they are trying to extend srvyr. This function
helps convert from the result of a survey function into a data.frame with an estimate and measures
of variance around it in a way that summarize expects. See vignette("extending-srvyr") for
more details.

Usage

get_var_est(
stat,
vartype,
level = 0.95,
df = Inf,
pre_calc_ci = FALSE,
deff = FALSE

)

Arguments

stat A survey statistic object, usually the result of a function from the survey package
or svyby.

vartype A vector indicating which variance estimates to calculate (options are se for
standard error, ci for confidence interval, var for variance or cv for coefficient of
variation). Multiples are allowed.

16 group_by

level One or more levels to calculate a confidence interval.

df Degrees of freedom, many survey functions default to Inf, but srvyr functions
generally default to the result of calling degf on the survey object.

pre_calc_ci Whether the confidence interval is pre-calculated (as in svyciprop)

deff Whether to return the design effect (calculated using survey::deff)

Value

a tbl_svy with the variables modified

groups Get/set the grouping variables for tbl.

Description

These functions do not perform non-standard evaluation, and so are useful when programming
against tbl objects. ungroup is a convenient inline way of removing existing grouping.

Arguments

x data tbl_df or tbl_svy object.

See Also

groups for information.

group_by Group a (survey) dataset by one or more variables.

Description

Most data operations are useful when done on groups defined by variables in the dataset. The
group_by function takes an existing table (or svy_table) and converts it to a grouped version, where
operations are performed "by group".

Arguments

.data A tbl

... variables to group by. All tbls accept variable names, some will also accept
functions of variables. Duplicated groups will be silently dropped.

add By default, when add = FALSE, group_by will override existing groups. To in-
stead add to the existing groups, use add = TRUE

.dots Used to work around non-standard evaluation. See vignette("nse", package
= "dplyr") for details.

group_map_dfr 17

Details

See group_by for more information about grouping regular data tables.

On tbl_svy objects, group_by sets up the object for operations similar to those allowed in svyby.

See Also

group_by for information about group_by on normal data tables.

Examples

Examples of svy_tbl group_by
library(survey)
data(api)
dstrata <- apistrat %>%

as_survey_design(strata = stype, weights = pw) %>%
group_by(stype)

dstrata %>%
summarise(api_diff = survey_mean(api00 - api99))

group_map_dfr Apply a function to each group

Description

group_map(), group_walk and group_map_dfr are purrr-style functions that can be used to iterate
on grouped survey objects (note that group_map_dfr replaces dplyr::group_modify because we
are changing the data from a tbl_svy to a regular tibble).

Usage

group_map_dfr(.data, .f, ..., .keep = FALSE)

S3 method for class 'tbl_svy'
group_map(.data, .f, ..., .keep = FALSE)

group_map_dfr(.data, .f, ..., .keep = FALSE)

Arguments

.data A tbl_svy object

.f A function or purrr-style formula to apply to each group

... Other arguments passed to .f

.keep Whether the grouping variables are kept when passed into .f

18 group_trim

Value

For group_map a list, for group_map_dfr a ‘tbl_df‘, and for group_walk invisibly the original
tbl_svy.

Examples

data(api, package = "survey")
dstrata <- apistrat %>%

as_survey_design(strata = stype, weights = pw)

results <- dstrata %>%
group_by(both) %>%
group_map(~survey::svyglm(api00~api99 + stype, .))

group_map_dfr calls `bind_rows` on the list returned and includes
grouping variables. This is most useful with a package like `broom`
but could also be used with survey package functions.
result_coef <- dstrata %>%

group_by(both) %>%
group_map_dfr(
~data.frame(

api99_coef = coef(survey::svyglm(api00~api99 + stype, .))[["api99"]]
)

)

group_trim Single table verbs from dplyr and tidyr

Description

These are data manipulation functions designed to work on tbl_svy objects.

Details

mutate and transmute can add or modify variables. See mutate for more details.

select, rename, and rename_with keep or rename variables. See select for more details.

pull extracts a variable as a vector (whereas select returns a tbl_svy). See pull for more details.

filter keeps certain observations. See filter for more details.

#’ drop_na drops observations containing missing values. See drop_na for more details.

arrange is not implemented for tbl_svy objects. Nor are any two table verbs such as bind_rows,
bind_cols or any of the joins (full_join, left_join, etc.). These data manipulations may require
modifications to the survey variable specifications and so cannot be done automatically. Instead, use
dplyr to perform them while the data is still stored in data.frames.

interact 19

interact Create interaction terms to group by when summarizing

Description

Allows multiple grouping by multiple variables as if they were a single variable, which allows
calculating proportions that sum to 100 more than a single grouping variable with survey_mean.

Usage

interact(...)

Arguments

... variables to group by. All types of tbls accept variable names, and most will
also accept functions of variables (though some database-backed tbls do not
allow creating variables).

Details

Behind the scenes, this function creates a special column type that is split back into the component
columns automatically by summarize.

Value

A vector of type srvyr_interaction, which is generally expected to be automatically split apart.

Examples

data(api, package = "survey")

dstrata <- apistrat %>%
as_survey_design(strata = stype, weights = pw)

The sum of the whole prop column is equal to 100%
dstrata %>%

group_by(interact(stype, awards)) %>%
summarize(prop = survey_mean())

But if you didn't interact, the sum of each stype's prop is 100%
dstrata %>%

group_by(stype, awards) %>%
summarize(prop = survey_mean())

20 srvyr

set_survey_vars Set the variables for the current survey variable

Description

This is a helper to allow srvyr’s syntactic style. In general, users will not have to worry about
setting variables in a survey object unless they are trying to extend srvyr. This function helps
convert a vector to a variable in the correct part of a survey object’s structure so that functions can
refer to it using the survey package’s formula notation. See vignette("extending-srvyr") for
more details.

Usage

set_survey_vars(.svy, x, name = "__SRVYR_TEMP_VAR__", add = FALSE)

Arguments

.svy A survey object
x A vector to be included in the variables portion of the survey object
name The name of the variable once it is added. Defaults to ‘__SRVYR_TEMP_VAR__‘

which is formatted weirdly to avoid name collisions.
add FALSE, the default, overwrite all current variables. If TRUE, will add this vari-

able instead.

Value

a tbl_svy with the variables modified

srvyr srvyr: A package for ’dplyr’-Like Syntax for Summary Statistics of
Survey Data.

Description

The srvyr package provides a new way of calculating summary statistics on survey data, based
on the dplyr package. There are three stages to using srvyr functions, creating a survey object,
manipulating the data, and calculating survey statistics.

Functions to create a survey object

as_survey_design, as_survey_rep, and as_survey_twophase are used to create surveys based
on a data.frame and design variables, replicate weights or two phase design respectively. Each
is based on a function in the survey package (svydesign, svrepdesign, twophase), and it is
easy to modify code that uses the survey package so that it works with the srvyr package. See
vignette("srvyr_vs_survey") for more details.

The function as_survey will choose between the other three functions based on the arguments
given to save some typing.

srvyr 21

Functions to manipulate data in a survey object

Once you’ve created a survey object, you can manipulate the data as you would using dplyr with a
data.frame. mutate modifies or creates a variable, select and rename select or rename variables,
and filter keeps certain observations.

Note that arrange and two table verbs such as bind_rows, bind_cols, or any of the joins are not
usable on survey objects because they might require modifications to the definition of your survey.
If you need to use these functions, you should do so before you convert the data.frame to a survey
object.

Functions to summarize a survey object

Now that you have your data set up correctly, you can calculate summary statistics. To get the
statistic over the whole population, use summarise, or to calculate it over a set of groups, use
group_by first.

You can calculate the mean, (with survey_mean), the total (survey_total), the quantile (survey_quantile),
or a ratio (survey_ratio). By default, srvyr will return the statistic and the standard error around
it in a data.frame, but with the vartype parameter, you can also get a confidence interval ("ci"),
variance ("var"), or coefficient of variation ("cv").

Within summarise, you can also use unweighted, which calculates a function without taking into
consideration the survey weighting.

Author(s)

Maintainer: Greg Freedman Ellis <greg.freedman@gmail.com>

Authors:

• Ben Schneider [contributor]

Other contributors:

• Thomas Lumley [contributor]

• Tomasz Żółtak [contributor]

• Pavel N. Krivitsky <pavel@statnet.org> [contributor]

See Also

Useful links:

• http://gdfe.co/srvyr/

• https://github.com/gergness/srvyr/

• Report bugs at https://github.com/gergness/srvyr/issues

http://gdfe.co/srvyr/
https://github.com/gergness/srvyr/
https://github.com/gergness/srvyr/issues

22 srvyr-se-deprecated

srvyr-se-deprecated Deprecated SE versions of main srvyr verbs

Description

srvyr has updated it’s standard evaluation semantics to match dplyr 0.7, so these underscore func-
tions are no longer required (but are still supported for backward compatibility reasons). See
se-deprecated or the dplyr vignette on programming (vignette("programming", package =
"dplyr")) for more details.

Usage

as_survey_(.data, ...)

as_survey_design_(
.data,
ids = NULL,
probs = NULL,
strata = NULL,
variables = NULL,
fpc = NULL,
nest = FALSE,
check_strata = !nest,
weights = NULL,
pps = FALSE,
variance = c("HT", "YG")

)

as_survey_rep_(
.data,
variables = NULL,
repweights = NULL,
weights = NULL,
type = c("BRR", "Fay", "JK1", "JKn", "bootstrap", "successive-difference", "ACS",

"other"),
combined_weights = TRUE,
rho = NULL,
bootstrap_average = NULL,
scale = NULL,
rscales = NULL,
fpc = NULL,
fpctype = c("fraction", "correction"),
mse = getOption("survey.replicates.mse")

)

as_survey_twophase_(
.data,

srvyr-se-deprecated 23

id,
strata = NULL,
probs = NULL,
weights = NULL,
fpc = NULL,
subset,
method = c("full", "approx", "simple")

)

cascade_(.data, ..., .dots, .fill = NA)

Arguments

.data a data.frame or an object from the survey package

... other arguments, see other functions for details

ids Variables specifying cluster ids from largest level to smallest level (leaving the
argument empty, NULL, 1, or 0 indicate no clusters).

probs Variables specifying cluster sampling probabilities.

strata Variables specifying strata.

variables Variables specifying variables to be included in survey. Defaults to all variables
in .data

fpc Variables specifying a finite population correct, see svydesign for more details.

nest If TRUE, relabel cluster ids to enforce nesting within strata.

check_strata If TRUE, check that clusters are nested in strata.

weights Variables specifying weights (inverse of probability).

pps "brewer" to use Brewer’s approximation for PPS sampling without replacement.
"overton" to use Overton’s approximation. An object of class HR to use the
Hartley-Rao approximation. An object of class ppsmat to use the Horvitz-
Thompson estimator.

variance For pps without replacement, use variance="YG" for the Yates-Grundy estima-
tor instead of the Horvitz-Thompson estimator

repweights Variables specifying the replication weight variables

type Type of replication weights
combined_weights

TRUE if the repweights already include the sampling weights. This is usually
the case.

rho Shrinkage factor for weights in Fay’s method
bootstrap_average

For type = "bootstrap", if the bootstrap weights have been averaged, gives the
number of iterations averaged over.

scale, rscales Scaling constant for variance, see svrepdesign for more information.

fpctype Finite population correction information

mse if TRUE, compute variances based on sum of squares around the point estimate,
rather than the mean of the replicates

24 summarise

id list of two sets of variable names for sampling unit identifiers

subset bare name of a variable which specifies which observations are selected in phase
2

method "full" requires (much) more memory, but gives unbiased variance estimates for
general multistage designs at both phases. "simple" or "approx" use less mem-
ory, and is correct for designs with simple random sampling at phase one and
stratified randoms sampling at phase two. See twophase for more details.

.dots Used to work around non-standard evaluation. See vignette("nse", package
= "dplyr") for details.

.fill Value to fill in for group summaries

srvyr_interaction srvyr interaction column

Description

srvyr_interaction columns help calculate proportions of the interaction of 2 or more variables.
They are created by interact, generally used as grouping variables in group_by and then auto-
matically split apart by summarise.

summarise Summarise multiple values to a single value.

Description

Summarise multiple values to a single value.

Arguments

.data tbl A tbl_svy object

... Name-value pairs of summarizing expressions, see details

.groups Defaults to "drop_last" in srvyr meaning that the last group is peeled off, but if
there are more groups they will be preserved. Other options are "drop", which
drops all groups, "keep" which keeps all of them and "rowwise" which converts
the object to a rowwise object (meaning calculations will be performed on each
row).

.unpack Whether to "unpack" named data.frame columns. srvyr predates dplyr’s sup-
port for data.frame columns so it does not treat them the same way by default.

summarise 25

Details

Summarise for tbl_svy objects accepts several specialized functions. Each of the functions a
variable (or two, in the case of survey_ratio), from the data.frame and default to providing the
measure and its standard error.

The argument vartype can choose one or more measures of uncertainty, se for standard error, ci
for confidence interval, var for variance, and cv for coefficient of variation. level specifies the
level for the confidence interval.

The other arguments correspond to the analogous function arguments from the survey package.

The available functions from srvyr are:

survey_mean Calculate the mean of a numeric variable or the proportion falling into groups for
the entire population or by groups. Based on svymean and svyciprop..

survey_total Calculate the survey total of the entire population or by groups. Based on svytotal.

survey_prop Calculate the proportion of the entire population or by groups. Based on svyciprop.

survey_ratio Calculate the ratio of 2 variables in the entire population or by groups. Based on
svyratio.

survey_quantile & survey_median Calculate quantiles in the entire population or by groups.
Based on svyquantile.

unweighted Calculate an unweighted estimate as you would on a regular tbl_df. Based on dplyr’s
summarise.

You can use expressions both in the ... of summarize and also in the arguments to the summarizing
functions. Though this is valid syntactically it can also allow you to calculate incorrect results (for
example if you multiply the mean by 100, the standard error is also multiplied by 100, but the
variance is not).

Examples

data(api, package = "survey")

dstrata <- apistrat %>%
as_survey_design(strata = stype, weights = pw)

dstrata %>%
summarise(api99_mn = survey_mean(api99),

api00_mn = survey_mean(api00),
api_diff = survey_mean(api00 - api99))

dstrata_grp <- dstrata %>%
group_by(stype)

dstrata_grp %>%
summarise(api99_mn = survey_mean(api99),

api00_mn = survey_mean(api00),
api_diff = survey_mean(api00 - api99))

`dplyr::across` can be used to programmatically summarize multiple columns
See https://dplyr.tidyverse.org/articles/colwise.html for details

26 survey_corr

A basic example of working on 2 columns at once and then calculating the total
the mean
total_vars <- c("enroll", "api.stu")
dstrata %>%

summarize(across(c(all_of(total_vars)), survey_total))

Expressions are allowed in summarize arguments & inside functions
Here we can calculate binary variable on the fly and also multiply by 100 to
get percentages
dstrata %>%

summarize(api99_over_700_pct = 100 * survey_mean(api99 > 700))

But be careful, the variance doesn't scale the same way, so this is wrong!
dstrata %>%

summarize(api99_over_700_pct = 100 * survey_mean(api99 > 700, vartype = "var"))
Wrong variance!

summarise_all Manipulate multiple columns.

Description

See summarize_all for more details. *_each functions will be deprecated in favor of *_all/*_if/*_at
functions.

survey_corr Calculate correlation and its variation using survey methods

Description

Calculate correlation from complex survey data. A wrapper around svyvar. survey_corr should
always be called from summarise. Note this is Pearson’s correlation.

Usage

survey_corr(
x,
y,
na.rm = FALSE,
vartype = c("se", "ci", "var", "cv"),
level = 0.95,
df = NULL,
...

)

survey_mean 27

Arguments

x A variable or expression

y A variable or expression

na.rm A logical value to indicate whether missing values should be dropped

vartype NULL to report no variability. Otherwise one or more of: standard error ("se",
the default), confidence interval ("ci"), variance ("var") or coefficient of varia-
tion ("cv").

level (For vartype = "ci" only) A single number or vector of numbers indicating the
confidence level

df (For vartype = "ci" only) A numeric value indicating the degrees of freedom
for t-distribution. The default (NULL) uses degf, but Inf is the usual survey
package’s default

... Ignored

Examples

data('api', package = 'survey')

apisrs %>%
as_survey_design(.ids = 1) %>%
summarize(api_corr = survey_corr(x = api00, y = api99))

apisrs %>%
as_survey_design(.ids = 1) %>%
group_by(sch.wide) %>%
summarize(
api_emer_corr = survey_corr(x = api00, y = emer, na.rm=TRUE, vartype="ci")

)

survey_mean Calculate mean/proportion and its variation using survey methods

Description

Calculate means and proportions from complex survey data. survey_mean with proportion =
FALSE (the default) or survey_prop with proportion = FALSE is a wrapper around svymean. survey_prop
with proportion = TRUE (the default) or survey_mean with proportion = TRUE is a wrapper around
svyciprop. survey_mean and survey_prop should always be called from summarise.

Usage

survey_mean(
x,
na.rm = FALSE,
vartype = c("se", "ci", "var", "cv"),
level = 0.95,

28 survey_mean

proportion = FALSE,
prop_method = c("logit", "likelihood", "asin", "beta", "mean", "xlogit"),
deff = FALSE,
df = NULL,
...

)

survey_prop(
vartype = c("se", "ci", "var", "cv"),
level = 0.95,
proportion = TRUE,
prop_method = c("logit", "likelihood", "asin", "beta", "mean", "xlogit"),
deff = FALSE,
df = NULL,
...

)

Arguments

x A variable or expression, or empty

na.rm A logical value to indicate whether missing values should be dropped. See the
section "Missing Values" later in this help page.

vartype Report variability as one or more of: standard error ("se", default), confidence
interval ("ci"), variance ("var") or coefficient of variation ("cv").

level (For vartype = "ci" only) A single number or vector of numbers indicating the
confidence level

proportion Use methods to calculate the proportion that may have more accurate confidence
intervals near 0 and 1. Based on svyciprop.

prop_method Type of proportion method to use if proportion is TRUE. See svyciprop for
details.

deff A logical value to indicate whether the design effect should be returned.

df (For vartype = "ci" only) A numeric value indicating the degrees of freedom
for t-distribution. The default (NULL) uses degf, but Inf is the usual survey
package’s default (except in svyciprop.

... Ignored

Details

Using survey_prop is equivalent to leaving out the x argument in survey_mean and setting proportion
= TRUE and this calculates the proportion represented within the data, with the last grouping variable
"unpeeled". interact allows for "unpeeling" multiple variables at once.

Missing Values

When calculating proportions for a grouping variable x, NA values will affect the estimated propor-
tions unless they are first removed by calling filter(!is.na(x)).

survey_mean 29

When calculating means for a numeric variable, equivalent results are obtained by calling filter(!is.na(x))
or using survey_mean(x, na.rm = TRUE). However, it is better to use survey_mean(x, na.rm =
TRUE) if you are simultaneously producing summaries for other variables that might not have miss-
ing values for the same rows as x.

Examples

data(api, package = "survey")

dstrata <- apistrat %>%
as_survey_design(strata = stype, weights = pw)

dstrata %>%
summarise(api99_mn = survey_mean(api99),

api_diff = survey_mean(api00 - api99, vartype = c("ci", "cv")))

dstrata %>%
group_by(awards) %>%
summarise(api00 = survey_mean(api00))

Use `survey_prop` calculate the proportion in each group
dstrata %>%

group_by(awards) %>%
summarise(pct = survey_prop())

Or you can also leave out `x` in `survey_mean`, so this is equivalent
dstrata %>%

group_by(awards) %>%
summarise(pct = survey_mean())

When there's more than one group, the last group is "peeled" off and proportions are
calculated within that group, each adding up to 100%.
So in this example, the sum of prop is 200% (100% for awards=="Yes" &
100% for awards=="No")
dstrata %>%

group_by(stype, awards) %>%
summarize(prop = survey_prop())

The `interact` function can help you calculate the proportion over
the interaction of two or more variables
So in this example, the sum of prop is 100%
dstrata %>%

group_by(interact(stype, awards)) %>%
summarize(prop = survey_prop())

Setting proportion = TRUE uses a different method for calculating confidence intervals
dstrata %>%

summarise(high_api = survey_mean(api00 > 875, proportion = TRUE, vartype = "ci"))

level takes a vector for multiple levels of confidence intervals
dstrata %>%

summarise(api99 = survey_mean(api99, vartype = "ci", level = c(0.95, 0.65)))

30 survey_old_quantile

Note that the default degrees of freedom in srvyr is different from
survey, so your confidence intervals might not be exact matches. To
Replicate survey's behavior, use df = Inf
dstrata %>%

summarise(srvyr_default = survey_mean(api99, vartype = "ci"),
survey_defualt = survey_mean(api99, vartype = "ci", df = Inf))

comparison <- survey::svymean(~api99, dstrata)
confint(comparison) # survey's default
confint(comparison, df = survey::degf(dstrata)) # srvyr's default

survey_old_quantile Calculate the quantile and its variation using survey methods

Description

Calculate quantiles from complex survey data. A wrapper around oldsvyquantile, which is a
version of the function from before version 4.1 of the survey package, available for backwards
compatibility. survey_old_quantile and survey_old_median should always be called from
summarise. See Thomas Lumley’s blogpost <https://notstatschat.rbind.io/2021/07/20/what-s-new-
in-the-survey-package/> for more details.

Usage

survey_old_quantile(
x,
quantiles,
na.rm = FALSE,
vartype = c("se", "ci", "var", "cv"),
level = 0.95,
q_method = "linear",
f = 1,
interval_type = c("Wald", "score", "betaWald", "probability", "quantile"),
ties = c("discrete", "rounded"),
df = NULL,
...

)

survey_old_median(
x,
na.rm = FALSE,
vartype = c("se", "ci"),
level = 0.95,
q_method = "linear",
f = 1,
interval_type = c("Wald", "score", "betaWald", "probability", "quantile"),

survey_old_quantile 31

ties = c("discrete", "rounded"),
df = NULL,
...

)

Arguments

x A variable or expression

quantiles A vector of quantiles to calculate

na.rm A logical value to indicate whether missing values should be dropped

vartype NULL to report no variability (default), otherwise one or more of: standard
error ("se") confidence interval ("ci") (variance and coefficient of variation not
available).

level A single number indicating the confidence level (only one level allowed)

q_method See "method" in approxfun

f See approxfun

interval_type See oldsvyquantile

ties See oldsvyquantile

df A number indicating the degrees of freedom for t-distribution. The default, Inf
uses the normal distribution (matches the survey package). Also, has no effect
for type = "betaWald".

... Ignored

Examples

library(survey)
data(api)

dstrata <- apistrat %>%
as_survey_design(strata = stype, weights = pw)

dstrata %>%
summarise(api99 = survey_old_quantile(api99, c(0.25, 0.5, 0.75)),

api00 = survey_old_median(api00, vartype = c("ci")))

dstrata %>%
group_by(awards) %>%
summarise(api00 = survey_old_median(api00))

32 survey_quantile

survey_quantile Calculate the quantile and its variation using survey methods

Description

Calculate quantiles from complex survey data. A wrapper around svyquantile. survey_quantile
and survey_median should always be called from summarise.

Usage

survey_quantile(
x,
quantiles,
na.rm = FALSE,
vartype = c("se", "ci", "var", "cv"),
level = 0.95,
interval_type = c("mean", "beta", "xlogit", "asin", "score", "quantile"),
qrule = c("math", "school", "shahvaish", "hf1", "hf2", "hf3", "hf4", "hf5", "hf6",

"hf7", "hf8", "hf9"),
df = NULL,
...

)

survey_median(
x,
na.rm = FALSE,
vartype = c("se", "ci", "var", "cv"),
level = 0.95,
interval_type = c("mean", "beta", "xlogit", "asin", "score", "quantile"),
qrule = c("math", "school", "shahvaish", "hf1", "hf2", "hf3", "hf4", "hf5", "hf6",

"hf7", "hf8", "hf9"),
df = NULL,
...

)

Arguments

x A variable or expression

quantiles A vector of quantiles to calculate

na.rm A logical value to indicate whether missing values should be dropped

vartype NULL to report no variability. Otherwise one or more of: standard error ("se",
the default), confidence interval ("ci"), variance ("var") or coefficient of varia-
tion ("cv").

level A single number indicating the confidence level (only one level allowed). Note
that this may effect estimated standard errors (see svyquantile details on alpha,
which equals 1-level).

survey_ratio 33

interval_type See svyquantile. Note that interval_type = "quantile" is only available
for replicate designs, and interval_type = "score" is unavailable for replicate
designs.

qrule See svyquantile

df A number indicating the degrees of freedom for t-distribution. The default,
NULL, uses the design degrees of freedom (matches the survey package).

... Ignored

Details

Note that the behavior of these functions has changed in srvyr version 1.1, but the old functions
are still (currently) supported as survey_old_quantile and survey_old_median if you need to
replicate the old results. For more details about what has changed, see Thomas Lumley’s blog post
on the changes, available here: <https://notstatschat.rbind.io/2021/07/20/what-s-new-in-the-survey-
package/>

Examples

library(survey)
data(api)

dstrata <- apistrat %>%
as_survey_design(strata = stype, weights = pw)

dstrata %>%
summarise(api99 = survey_quantile(api99, c(0.25, 0.5, 0.75)),

api00 = survey_median(api00, vartype = c("ci")))

dstrata %>%
group_by(awards) %>%
summarise(api00 = survey_median(api00))

survey_ratio Calculate the ratio and its variation using survey methods

Description

Calculate ratios from complex survey data. A wrapper around svyratio. survey_ratio should
always be called from summarise.

Usage

survey_ratio(
numerator,
denominator,
na.rm = FALSE,
vartype = c("se", "ci", "var", "cv"),

34 survey_ratio

level = 0.95,
deff = FALSE,
df = NULL,
...

)

Arguments

numerator The numerator of the ratio
denominator The denominator of the ratio
na.rm A logical value to indicate whether missing values should be dropped
vartype Report variability as one or more of: standard error ("se", default), confidence

interval ("ci"), variance ("var") or coefficient of variation ("cv").
level A single number or vector of numbers indicating the confidence level
deff A logical value to indicate whether the design effect should be returned.
df (For vartype = "ci" only) A numeric value indicating the degrees of freedom

for t-distribution. The default (NULL) uses degf, but Inf is the usual survey
package’s default (except in svyciprop.

... Ignored

Examples

library(survey)
data(api)

dstrata <- apistrat %>%
as_survey_design(strata = stype, weights = pw)

dstrata %>%
summarise(enroll = survey_ratio(api00, api99, vartype = c("ci", "cv")))

dstrata %>%
group_by(awards) %>%
summarise(api00 = survey_ratio(api00, api99))

level takes a vector for multiple levels of confidence intervals
dstrata %>%

summarise(enroll = survey_ratio(api99, api00, vartype = "ci", level = c(0.95, 0.65)))

Note that the default degrees of freedom in srvyr is different from
survey, so your confidence intervals might not exactly match. To
replicate survey's behavior, use df = Inf
dstrata %>%

summarise(srvyr_default = survey_total(api99, vartype = "ci"),
survey_defualt = survey_total(api99, vartype = "ci", df = Inf))

comparison <- survey::svytotal(~api99, dstrata)
confint(comparison) # survey's default
confint(comparison, df = survey::degf(dstrata)) # srvyr's default

survey_tally 35

survey_tally Count/tally survey weighted observations by group

Description

Analogous to tally and count, calculates the survey weighted count of observations. survey_tally
will call survey_total empty (resulting in the count of each group) or on wt if it is specified (re-
sulting in the survey weighted total of wt). survey_count is similar, but calls group_by before
calculating the count and then returns the data to the original groupings.

Usage

survey_tally(
x,
wt,
sort = FALSE,
name = "n",
vartype = c("se", "ci", "var", "cv")

)

survey_count(
x,
...,
wt = NULL,
sort = FALSE,
name = "n",
.drop = dplyr::group_by_drop_default(x),
vartype = c("se", "ci", "var", "cv")

)

Arguments

x A tbl_svy object, as created by as_survey and related functions.

wt (Optional) A variable to weight on (in addition to the survey weights, which are
always used). If left unspecified, tally() will use a variable named "n" if one
exists, but count() will not. Override this behavior by specifying wt = NULL.

sort Whether to sort the results (defaults to FALSE)

name Name of count variable created (defaults to n). If the variable already exists,
will add "n" to the end until it does not.

vartype What types variation estimates to calculate, passed to survey_total.

... Variables to group by, passed to group_by().

.drop When .drop = TRUE, empty groups are dropped, see group_by documentation
for more details.

36 survey_total

Details

If n already exists, tally will use it as the weight, but count will not.

Examples

library(survey)
data(api)

dstrata <- apistrat %>%
as_survey_design(strata = stype, weights = pw)

dstrata %>%
group_by(awards) %>%
survey_tally()

dstrata %>%
survey_count(awards)

survey_total Calculate the total and its variation using survey methods

Description

Calculate totals from complex survey data. A wrapper around svytotal. survey_total should
always be called from summarise.

Usage

survey_total(
x,
na.rm = FALSE,
vartype = c("se", "ci", "var", "cv"),
level = 0.95,
deff = FALSE,
df = NULL,
...

)

Arguments

x A variable or expression, or empty

na.rm A logical value to indicate whether missing values should be dropped

vartype Report variability as one or more of: standard error ("se", default), confidence
interval ("ci"), variance ("var") or coefficient of variation ("cv").

level A single number or vector of numbers indicating the confidence level

deff A logical value to indicate whether the design effect should be returned.

survey_var 37

df (For vartype = "ci" only) A numeric value indicating the degrees of freedom
for t-distribution. The default (NULL) uses degf, but Inf is the usual survey
package’s default.

... Ignored

Examples

library(survey)
data(api)

dstrata <- apistrat %>%
as_survey_design(strata = stype, weights = pw)

dstrata %>%
summarise(enroll_tot = survey_total(enroll),

tot_meals = survey_total(enroll * meals / 100, vartype = c("ci", "cv")))

dstrata %>%
group_by(awards) %>%
summarise(api00 = survey_total(enroll))

Leave x empty to calculate the total in each group
dstrata %>%

group_by(awards) %>%
summarise(pct = survey_total())

level takes a vector for multiple levels of confidence intervals
dstrata %>%

summarise(enroll = survey_total(enroll, vartype = "ci", level = c(0.95, 0.65)))

Note that the default degrees of freedom in srvyr is different from
survey, so your confidence intervals might not exactly match. To
replicate survey's behavior, use df = Inf
dstrata %>%

summarise(srvyr_default = survey_total(api99, vartype = "ci"),
survey_defualt = survey_total(api99, vartype = "ci", df = Inf))

comparison <- survey::svytotal(~api99, dstrata)
confint(comparison) # survey's default
confint(comparison, df = survey::degf(dstrata)) # srvyr's default

survey_var Calculate the population variance and its variation using survey meth-
ods

Description

Calculate population variance from complex survey data. A wrapper around svyvar. survey_var
should always be called from summarise.

38 survey_var

Usage

survey_var(
x,
na.rm = FALSE,
vartype = c("se", "ci", "var"),
level = 0.95,
df = NULL,
...

)

survey_sd(x, na.rm = FALSE, ...)

Arguments

x A variable or expression, or empty

na.rm A logical value to indicate whether missing values should be dropped

vartype Report variability as one or more of: standard error ("se", default) or variance
("var") (confidence intervals and coefficient of variation not available).

level (For vartype = "ci" only) A single number or vector of numbers indicating the
confidence level.

df (For vartype = "ci" only) A numeric value indicating the degrees of freedom for
t-distribution. The default (Inf) is equivalent to using normal distribution and in
case of population variance statistics there is little reason to use any other values
(see Details).

... Ignored

Details

Be aware that confidence intervals for population variance statistic are computed by package survey
using t or normal (with df=Inf) distribution (i.e. symmetric distributions). This could be a very
poor approximation if even one of these conditions is met:

• there are few sampling design degrees of freedom,

• analyzed variable isn’t normally distributed,

• there is huge variation in sampling probabilities of the survey design.

Because of this be very careful using confidence intervals for population variance statistics espe-
cially while performing analysis within subsets of data or using grouped survey objects.

Sampling distribution of the variance statistic in general is asymmetric (chi-squared in case of sim-
ple random sampling of normally distributed variable) and if analyzed variable isn’t normally dis-
tributed or there is huge variation in sampling probabilities of the survey design (or both) it could
converge to normality only very slowly (with growing number of survey design degrees of freedom).

svychisq 39

Examples

library(survey)
data(api)

dstrata <- apistrat %>%
as_survey_design(strata = stype, weights = pw)

dstrata %>%
summarise(api99_var = survey_var(api99),

api99_sd = survey_sd(api99))

dstrata %>%
group_by(awards) %>%
summarise(api00_var = survey_var(api00),

api00_sd = survey_sd(api00))

standard deviation and variance of the population variance estimator
are available with vartype argument
(but not for the population standard deviation estimator)
dstrata %>%

summarise(api99_variance = survey_var(api99, vartype = c("se", "var")))

svychisq Chisquared tests of association for survey data.

Description

Chisquared tests of association for survey data.

Arguments

formula See details in svychisq

design See details in svychisq

na.rm See details in svychisq

... See details in svychisq

tbl_svy tbl_svy object.

Description

A tbl_svy wraps a locally stored svydesign and adds methods for dplyr single-table verbs like
mutate, group_by and summarise. Create a tbl_svy using as_survey_design.

40 tbl_vars

Methods

tbl_df implements these methods from dplyr.

select or rename Select or rename variables in a survey’s dataset.

mutate or transmute Modify and create variables in a survey’s dataset.

group_by and summarise Get descriptive statistics from survey.

Examples

library(survey)
library(dplyr)
data(api)
svy <- as_survey_design(apistrat, strata = stype, weights = pw)
svy

Data manipulation verbs ---
filter(svy, pcttest > 95)
select(svy, starts_with("acs")) # variables used in survey design are automatically kept
summarise(svy, col.grad = survey_mean(col.grad))
mutate(svy, api_diff = api00 - api99)

Group by operations ---
To calculate survey
svy_group <- group_by(svy, dname)

summarise(svy, col.grad = survey_mean(col.grad),
api00 = survey_mean(api00, vartype = "ci"))

tbl_vars List variables produced by a tbl.

Description

List variables produced by a tbl.

Arguments

x A tbl object

uninteract 41

uninteract Break interaction vectors back into component columns

Description

This function will not generally be needed by users because summarise automatically un-interacts
interaction columns for you.

Usage

uninteract(x)

S3 method for class 'srvyr_interaction'
uninteract(x)

S3 method for class 'data.frame'
uninteract(x)

is.interaction(x)

Arguments

x Either a srvyr_interaction column or a data.frame

Value

A data.frame

unweighted Calculate the an unweighted summary statistic from a survey

Description

Calculate unweighted summaries from a survey dataset, just as on a normal data.frame with summarise.
Though it is possible to use regular functions directly, because the survey package doesn’t always
remove rows when filtering (instead setting the weight to 0), this can sometimes give bad results.
See examples for more details.

Usage

unweighted(...)

Arguments

... variables or expressions, calculated on the unweighted data.frame behind the
tbl_svy object.

42 unweighted

Details

Uses tidy evaluation semantics and so if you want to use wrapper functions based on variable
names, you must use tidy evaluation, see the examples here, documentation in nse-force, or the
dplyr vignette called ’programming’ for more information.

Examples

library(survey)
library(dplyr)
data(api)

dstrata <- apistrat %>%
as_survey_design(strata = stype, weights = pw)

dstrata %>%
summarise(api99_unw = unweighted(mean(api99)),

n = unweighted(n()))

dstrata %>%
group_by(stype) %>%
summarise(api_diff_unw = unweighted(mean(api00 - api99)))

Some survey designs, like ones with raked weights, are not removed
when filtered to preserve the structure. So if you don't use `unweighted()`
your results can be wrong.
Declare basic clustered design ----
cluster_design <- as_survey_design(

.data = apiclus1,
id = dnum,
weights = pw,
fpc = fpc

)

Add raking weights for school type ----
pop.types <- data.frame(stype=c("E","H","M"), Freq=c(4421,755,1018))
pop.schwide <- data.frame(sch.wide=c("No","Yes"), Freq=c(1072,5122))

raked_design <- rake(
cluster_design,
sample.margins = list(~stype,~sch.wide),
population.margins = list(pop.types, pop.schwide)

)

raked_design %>%
filter(cname != "Alameda") %>%

group_by(cname) %>%
summarize(
direct_unw_mean = mean(api99),
wrapped_unw_mean = unweighted(mean(api99))

) %>%
filter(cname == "Alameda")

unweighted 43

Notice how the results are different when using `unweighted()`

Index

all_vars (summarise_all), 26
anti_join (dplyr_filter_joins), 15
any_vars (summarise_all), 26
approxfun, 31
as.svrepdesign, 9
as_survey, 2, 20
as_survey_ (srvyr-se-deprecated), 22
as_survey_design, 2, 4, 20, 39
as_survey_design_

(srvyr-se-deprecated), 22
as_survey_rep, 2, 7, 20
as_survey_rep_ (srvyr-se-deprecated), 22
as_survey_twophase, 2, 10, 20
as_survey_twophase_

(srvyr-se-deprecated), 22
as_tibble, 12

cascade, 12
cascade_ (srvyr-se-deprecated), 22
collect, 13
compute (collect), 13
cur_svy, 13
cur_svy_full (cur_svy), 13
cur_svy_wts, 14
current_svy (cur_svy), 13

degf, 28, 34, 37
dplyr_filter_joins, 15
dplyr_single (group_trim), 18
drop_na, 18
drop_na (group_trim), 18

filter, 18, 21
filter (group_trim), 18
filter_ (srvyr-se-deprecated), 22
filter_all (summarise_all), 26
filter_at (summarise_all), 26
filter_if (summarise_all), 26
funs (summarise_all), 26
funs_ (srvyr-se-deprecated), 22

get_var_est, 15
group_by, 16, 17, 21, 24, 35, 40
group_by_ (group_by), 16
group_by_all (summarise_all), 26
group_by_at (summarise_all), 26
group_by_if (summarise_all), 26
group_data (groups), 16
group_indices (groups), 16
group_keys (groups), 16
group_map.tbl_svy (group_map_dfr), 17
group_map_dfr, 17
group_rows (groups), 16
group_size (groups), 16
group_trim, 18
group_vars (groups), 16
groups, 16, 16

interact, 19, 24, 28
is.interaction (uninteract), 41

mutate, 18, 21, 40
mutate (group_trim), 18
mutate_ (srvyr-se-deprecated), 22
mutate_all (summarise_all), 26
mutate_at (summarise_all), 26
mutate_each (summarise_all), 26
mutate_each_ (srvyr-se-deprecated), 22
mutate_if (summarise_all), 26

n_groups (groups), 16
nse-force, 42

oldsvyquantile, 30, 31

pull, 18
pull (group_trim), 18

rename, 21, 40
rename (group_trim), 18
rename_ (srvyr-se-deprecated), 22
rename_all (summarise_all), 26

44

INDEX 45

rename_at (summarise_all), 26
rename_if (summarise_all), 26
rename_with (group_trim), 18

select, 6, 9, 10, 18, 21, 40
select (group_trim), 18
select_ (srvyr-se-deprecated), 22
select_all (summarise_all), 26
select_at (summarise_all), 26
select_if (summarise_all), 26
semi_join (dplyr_filter_joins), 15
set_survey_vars, 20
srvyr, 20
srvyr-package (srvyr), 20
srvyr-se-deprecated, 22
srvyr_interaction, 19, 24
summarise, 12, 21, 24, 24, 25–27, 30, 32, 33,

36, 37, 40, 41
summarise_ (srvyr-se-deprecated), 22
summarise_all, 26
summarise_at (summarise_all), 26
summarise_each (summarise_all), 26
summarise_each_ (srvyr-se-deprecated),

22
summarise_if (summarise_all), 26
summarize (summarise), 24
summarize_ (srvyr-se-deprecated), 22
summarize_all, 26
summarize_all (summarise_all), 26
summarize_at (summarise_all), 26
summarize_each (summarise_all), 26
summarize_each_ (srvyr-se-deprecated),

22
summarize_if (summarise_all), 26
survey_corr, 26
survey_count (survey_tally), 35
survey_mean, 21, 25, 27
survey_median, 25
survey_median (survey_quantile), 32
survey_old_median

(survey_old_quantile), 30
survey_old_quantile, 30, 33
survey_prop, 25
survey_prop (survey_mean), 27
survey_quantile, 21, 25, 32
survey_ratio, 21, 25, 33
survey_sd (survey_var), 37
survey_tally, 35
survey_total, 21, 25, 35, 36

survey_var, 37
svrepdesign, 9, 20, 23
svyby, 17
svychisq, 39, 39
svyciprop, 25, 27, 28, 34
svydesign, 5, 6, 20, 23
svymean, 25, 27
svyquantile, 25, 32, 33
svyratio, 25, 33
svytotal, 25, 36
svyvar, 26, 37

tally, 35
tbl_df, 16
tbl_svy, 16, 39
tbl_vars, 40
transmute, 40
transmute (group_trim), 18
transmute_ (srvyr-se-deprecated), 22
twophase, 10, 11, 20, 24

ungroup (groups), 16
uninteract, 41
unweighted, 21, 25, 41

vars (summarise_all), 26

	as_survey
	as_survey_design
	as_survey_rep
	as_survey_twophase
	as_tibble
	cascade
	collect
	cur_svy
	cur_svy_wts
	dplyr_filter_joins
	get_var_est
	groups
	group_by
	group_map_dfr
	group_trim
	interact
	set_survey_vars
	srvyr
	srvyr-se-deprecated
	srvyr_interaction
	summarise
	summarise_all
	survey_corr
	survey_mean
	survey_old_quantile
	survey_quantile
	survey_ratio
	survey_tally
	survey_total
	survey_var
	svychisq
	tbl_svy
	tbl_vars
	uninteract
	unweighted
	Index

